Inverse Trigonometric Functions — Class 12 NCERT
Concise, exam-friendly summary covering principal values, domains, ranges, identities, properties, and useful formulae.
1. What are Inverse Trigonometric Functions?
Inverse trigonometric functions return the angle whose trigonometric ratio is given. Because basic trig functions are periodic and not one-to-one over ℝ, we restrict their domains to principal intervals to define well-behaved inverses.
2. Principal Domains & Ranges
| Function | Domain | Range (Principal Value) |
|---|---|---|
| sin-1x | [-1, 1] | [−π/2, π/2] |
| cos-1x | [-1, 1] | [0, π] |
| tan-1x | ℝ | (−π/2, π/2) |
| cot-1x | ℝ | (0, π) |
| sec-1x | (−∞, −1] ∪ [1, ∞) | [0, π] \ {π/2} |
| cosec-1x | (−∞, −1] ∪ [1, ∞) | [−π/2, π/2] \ {0} |
3. Basic Identities & Principal Relations
sin(sin-1x) = xfor x ∈ [−1,1]cos(cos-1x) = xfor x ∈ [−1,1]tan(tan-1x) = xfor x ∈ ℝsin-1(sin x) = xonly if x ∈ [−π/2, π/2]cos-1(cos x) = xonly if x ∈ [0, π]
4. Useful Formulae & Relationships
sin-1x + cos-1x = π/2tan-1x + cot-1x = π/2sin-1(−x) = −sin-1x,tan-1(−x) = −tan-1xcos-1(−x) = π − cos-1x-
Addition formula for arctan:
tan-1x + tan-1y = \tan-1((x + y)/(1 − xy)) (when xy < 1)
Adjust by +π or −π when necessary to place the result in (−π/2, π/2).
-
Subtraction:
tan-1x − tan-1y = tan-1((x − y)/(1 + xy)), 1 + xy ≠ 0
5. Graphical Notes
Graphs of inverse trig functions are reflections of their parent functions about the line y = x on their restricted domains. Key features:
- sin-1x: increasing, odd, domain [−1,1], range [−π/2, π/2].
- cos-1x: decreasing, domain [−1,1], range [0, π].
- tan-1x: increasing, horizontal asymptotes at ±π/2.
6. Applications
- Solving trigonometric equations where angle needs to be recovered.
- Integral calculus — substitution and inverse trig integrals.
- Geometry and coordinate problems involving angles from ratios.
Exam Tips
- Always state the principal range when you answer; this prevents sign and branch errors.
- Use standard domain restrictions before inverting trig expressions.
- For addition/subtraction of arctan, consider the sign of denominators and adjust by π when the argument goes outside the principal range.
- Memorise basic complementary relations:
sin-1x + cos-1x = π/2.
📘 Detailed Summary: Inverse Trigonometric Functions (Class 12 NCERT)
The chapter Inverse Trigonometric Functions introduces you to the reverse process of trigonometric functions — meaning, instead of finding the trigonometric value of an angle, you find the angle whose trigonometric value is known.
But since trigonometric functions are periodic (they repeat), they’re not one-one and hence don’t have inverses on their full domain.
So the chapter focuses on restricting their domains to make them one-one, and then defining their inverses.
1️⃣ Why Do We Need Restricted Domains?
Trigonometric functions like sin, cos, tan keep repeating, so they’re not one-one on ℝ.
To define an inverse, each function must first be made bijective.
So NCERT chooses standard restricted domains:
sin x → [−π2,π2][- \frac{\pi}{2}, \frac{\pi}{2}][−2π,2π]
cos x → [0,π][0, \pi][0,π]
tan x → (−π2,π2)(- \frac{\pi}{2}, \frac{\pi}{2})(−2π,2π)
cot x → (0,π)(0, \pi)(0,π)
sec x → [0,π]∖{π2}[0, \pi] \setminus \{\frac{\pi}{2}\}[0,π]∖{2π}
cosec x → [−π2,π2]∖{0}[- \frac{\pi}{2}, \frac{\pi}{2}] \setminus \{0\}[−2π,2π]∖{0}
On these intervals, the functions become one–one and onto, so inverses can be defined properly.
2️⃣ Definition of Inverse Trigonometric Functions
The inverse functions are written as:
sin−1x\sin^{-1}xsin−1x
cos−1x\cos^{-1}xcos−1x
tan−1x\tan^{-1}xtan−1x
cot−1x\cot^{-1}xcot−1x
sec−1x\sec^{-1}xsec−1x
csc−1x\csc^{-1}xcsc−1x
Each of these takes a value and returns the principal angle that lies in the restricted range.
For example:
sin−1(x)=θsuch that sinθ=x and θ∈[−π2,π2]\sin^{-1}(x) = \theta \quad \text{such that } \sin \theta = x \text{ and } \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]sin−1(x)=θsuch that sinθ=x and θ∈[−2π,2π]
3️⃣ Domains and Ranges of Inverse Trigonometric Functions
(i) sin⁻¹ x
Domain: [−1,1][-1, 1][−1,1]
Range: [−π2,π2]\left[-\frac{\pi}{2}, \frac{\pi}{2}\right][−2π,2π]
(ii) cos⁻¹ x
Domain: [−1,1][-1, 1][−1,1]
Range: [0,π][0, \pi][0,π]
(iii) tan⁻¹ x
Domain: ℝ
Range: (−π2,π2)\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)(−2π,2π)
(iv) cot⁻¹ x
Domain: ℝ
Range: (0,π)(0, \pi)(0,π)
(v) sec⁻¹ x
Domain: (−∞,−1]∪[1,∞)(-\infty, -1] \cup [1, \infty)(−∞,−1]∪[1,∞)
Range: [0,π]∖{π2}[0, \pi] \setminus \{\frac{\pi}{2}\}[0,π]∖{2π}
(vi) cosec⁻¹ x
Domain: (−∞,−1]∪[1,∞)(-\infty, -1] \cup [1, \infty)(−∞,−1]∪[1,∞)
Range: [−π2,π2]∖{0}\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \setminus \{0\}[−2π,2π]∖{0}
These ranges are the principal values.
4️⃣ Important Properties
a) Basic Inverse Identities
sin(sin−1x)=x\sin(\sin^{-1}x) = xsin(sin−1x)=x cos(cos−1x)=x\cos(\cos^{-1}x) = xcos(cos−1x)=x tan(tan−1x)=x\tan(\tan^{-1}x) = xtan(tan−1x)=x
But the reverse identities depend on the quadrant:
sin−1(sinx)=xonly if x∈[−π2,π2]\sin^{-1}(\sin x) = x \quad \text{only if } x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]sin−1(sinx)=xonly if x∈[−2π,2π] cos−1(cosx)=xonly if x∈[0,π]\cos^{-1}(\cos x) = x \quad \text{only if } x \in [0, \pi]cos−1(cosx)=xonly if x∈[0,π]
5️⃣ Relationships Between Inverse Functions
Some extremely helpful identities:
Complementary Angle Relations
sin−1x+cos−1x=π2\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}sin−1x+cos−1x=2π tan−1x+cot−1x=π2\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}tan−1x+cot−1x=2π
Negative Angle Relations
sin−1(−x)=−sin−1(x)\sin^{-1}(-x) = -\sin^{-1}(x)sin−1(−x)=−sin−1(x) tan−1(−x)=−tan−1(x)\tan^{-1}(-x) = -\tan^{-1}(x)tan−1(−x)=−tan−1(x) cos−1(−x)=π−cos−1(x)\cos^{-1}(-x) = \pi – \cos^{-1}(x)cos−1(−x)=π−cos−1(x)
6️⃣ Miscellaneous Important Results
tan−1x+tan−1y={tan−1(x+y1−xy),xy<1tan−1(x+y1−xy)+π,x>0,y>0,xy>1\tan^{-1}x + \tan^{-1}y = \begin{cases} \tan^{-1}\left(\frac{x + y}{1 – xy}\right), & xy < 1 \\ \tan^{-1}\left(\frac{x + y}{1 – xy}\right) + \pi, & x > 0, y > 0, xy > 1 \end{cases}tan−1x+tan−1y=⎩⎨⎧tan−1(1−xyx+y),tan−1(1−xyx+y)+π,xy<1x>0,y>0,xy>1 tan−1x−tan−1y=tan−1(x−y1+xy),1+xy≠0\tan^{-1}x – \tan^{-1}y = \tan^{-1}\left(\frac{x – y}{1 + xy}\right), \quad 1 + xy \neq 0tan−1x−tan−1y=tan−1(1+xyx−y),1+xy=0
These are super useful in board questions.
7️⃣ Graphical Behaviour
The chapter also introduces graphs of inverse functions:
Increasing/decreasing nature
Symmetry about line y=xy = xy=x
Graph of y=sin−1xy = \sin^{-1}xy=sin−1x and y=cos−1xy = \cos^{-1}xy=cos−1x compared with sin and cos
It gives you visual insight into why we restrict domains.
8️⃣ Applications
Inverse trigonometric functions are essential in:
Calculus (especially integration)
Geometry
Coordinate geometry
Solving equations
Modelling angles where direct trig functions don’t work cleanly